Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity

Urheber*innen

Beel,  Casey
External Organizations;

/persons/resource/jheslop

Heslop,  Joanne
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Orwin,  John
External Organizations;

Pope,  Michael
External Organizations;

Schevers,  Amanda
External Organizations;

Hung,  Jacqueline
External Organizations;

Lafreniere,  Melissa
External Organizations;

Lamoureux,  Scott
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5003543.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beel, C., Heslop, J., Orwin, J., Pope, M., Schevers, A., Hung, J., Lafreniere, M., Lamoureux, S. (2021): Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. - Nature Communications, 12, 1448.
https://doi.org/10.1038/s41467-021-21759-3


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5003543
Zusammenfassung
Hydrological transformations induced by climate warming are causing Arctic annual fluvial energy to shift from skewed (snowmelt-dominated) to multimodal (snowmelt- and rainfall-dominated) distributions. We integrated decade-long hydrometeorological and biogeochemical data from the High Arctic to show that shifts in the timing and magnitude of annual discharge patterns and stream power budgets are causing Arctic material transfer regimes to undergo fundamental changes. Increased late summer rainfall enhanced terrestrial-aquatic connectivity for dissolved and particulate material fluxes. Permafrost disturbances (<3% of the watersheds’ areal extent) reduced watershed-scale dissolved organic carbon export, offsetting concurrent increased export in undisturbed watersheds. To overcome the watersheds’ buffering capacity for transferring particulate material (30 ± 9 Watt), rainfall events had to increase by an order of magnitude, indicating the landscape is primed for accelerated geomorphological change when future rainfall magnitudes and consequent pluvial responses exceed the current buffering capacity of the terrestrial-aquatic continuum.