Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources

Urheber*innen

Barnhart ,  Katherine R.
External Organizations;

Tucker ,  Gregory E.
External Organizations;

Doty ,  Sandra G.
External Organizations;

Glade ,  Rachel C.
External Organizations;

/persons/resource/cshobe

Shobe,  Charles
4.7 Earth Surface Process Modelling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Rossi ,  Matthew W.
External Organizations;

Hill ,  Mary C.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5004209.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Barnhart, K. R., Tucker, G. E., Doty, S. G., Glade, R. C., Shobe, C., Rossi, M. W., Hill, M. C. (2020): Projections of landscape evolution on a 10,000 year timescale with assessment and partitioning of uncertainty sources. - Journal of Geophysical Research: Earth Surface, 125, 12, e2020JF005795.
https://doi.org/10.1029/2020JF005795


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5004209
Zusammenfassung
Long‐term erosion can threaten infrastructure and buried waste, with consequences for management of natural systems. We develop erosion projections over 10 ky for a 5 km2 watershed in New York, USA. Because there is no single landscape evolution model appropriate for the study site we assess uncertainty in projections associated with model structure by considering a set of alternative models, each with a slightly different governing equation. In addition to model structure uncertainty we consider the following uncertainty sources: selection of a final model set; each model's parameter values estimated through calibration; simulation boundary conditions such as the future incision of downstream rivers and future climate; and initial conditions (e.g., site topography which may undergo near‐term anthropogenic modification). We use an Analysis‐of‐Variance approach to assess and partition uncertainty in projected erosion into the variance attributable to each source. Our results suggest 1/6 of the watershed will experience erosion exceeding 5 m in the next 10 ky. Uncertainty in projected erosion increases with time and the projection uncertainty attributable to each source manifests in a distinct spatial pattern. Model structure uncertainty is relatively low, which reflects our ability to constrain parameter values and reduce the model set through calibration to the recent geologic past. Beyond site‐specific findings, our work demonstrates what information prediction‐under‐uncertainty studies can provide about geomorphic systems. Our results represent the first application of a comprehensive multi‐model uncertainty analysis for long‐term erosion forecasting.