Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines

Urheber*innen

Heinz,  Jacob
External Organizations;

Rambags,  Vita
External Organizations;

/persons/resource/dirksm

Schulze-Makuch,  Dirk
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5008888.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heinz, J., Rambags, V., Schulze-Makuch, D. (2021): Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. - Life, 11, 11, 1194.
https://doi.org/10.3390/life11111194


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5008888
Zusammenfassung
The availability of liquid water is a prerequisite for all lifeforms on Earth. In hyperarid subzero environments like the Dry Valleys in Antarctica or the near-subsurface of Mars liquid water might be provided temporarily by hygroscopic substances that absorb water from the atmosphere and lower the freezing point of water. To evaluate the potential of hygroscopic compounds to serve as a habitat, it is necessary to explore the microbial tolerances towards these substances and their life-limiting properties. Here we present a study investigating the tolerances of the halotolerant yeast Debaryomyces hansenii to various solutes. Growth experiments were conducted via counting colony forming units (CFUs) after inoculation of a liquid growth medium containing a specific solute concentration. The lowest water activities (aw) enabling growth were determined to be ~0.83 in glycerol and fructose-rich media. For all other solutes the growth-enabling aw was higher, due to additional stress factors such as chaotropicity and ionic strength. Additionally, we found that the solute tolerances of D. hansenii correlate with both the eutectic freezing point depressions and the deliquescence relative humidities of the respective solutes. Our findings strongly impact our understanding of the habitability of solute-rich low aw environments on Earth and beyond.