Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seismic velocity recovery in the subsurface: transient damage and groundwater drainage following the 2015 Gorkha earthquake, Nepal

Urheber*innen
/persons/resource/lillien

Illien,  Luc
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/chris

Sens-Schönfelder,  C.
2.4 Seismology, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/alpha01

Andermann,  C.
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/omarc

Marc,  O.
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/klcook

Cook,  K.
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Adhikari,  Lok B.
External Organizations;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

/persons/resource/hovius

Hovius,  Niels
Staff Scientific Executive Board, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Publikationen aller GIPP-unterstützten Projekte, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5009630.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Illien, L., Sens-Schönfelder, C., Andermann, C., Marc, O., Cook, K., Adhikari, L. B., Hovius, N. (2022): Seismic velocity recovery in the subsurface: transient damage and groundwater drainage following the 2015 Gorkha earthquake, Nepal. - Journal of Geophysical Research: Solid Earth, 127, 2, e2021JB023402.
https://doi.org/10.1029/2021JB023402


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5009630
Zusammenfassung
Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behaviour has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations δv retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behaviour we inferred from a previously calibrated groundwater model. The fitting of the δv data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behaviour, interpreted as an enhanced permeability in the shallow subsurface, lasts for ∼ 6 months and is shorter than the damage relaxation ( ∼ 1 year). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.