English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Geothermal Resources and ATES Potential of Mesozoic Reservoirs in the North German Basin

Authors
/persons/resource/mfrick

Frick,  M.
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/kranz

Kranz,  S.
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/norden

Norden,  Ben
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/dbruhn

Bruhn,  David
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/fuchs

Fuchs,  Sven
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)

5010776.pdf
(Publisher version), 15MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Frick, M., Kranz, S., Norden, B., Bruhn, D., Fuchs, S. (2022): Geothermal Resources and ATES Potential of Mesozoic Reservoirs in the North German Basin. - Energies, 15, 6, 1980.
https://doi.org/10.3390/en15061980


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5010776
Abstract
Mesozoic sandstone aquifers in the North German Basin offer significant potential to provide green and sustainable geothermal heat as well as large-scale storage of heat or chill. The determination of geothermal and subsurface heat storage potentials is still afflicted with obstacles due to sparse and partly uncertain subsurface data. Relevant data include the structural and depositional architecture of the underground and the detailed petrophysical properties of the constituting rocks; both are required for a detailed physics-based integrated modeling and a potential assessment of the subsurface. For the present study, we combine recently published basin-wide structural interpretations of depth horizons of the main stratigraphic formations, with temperature data from geological and geostatistical 3D models (i.e., CEBS, GeotIS). Based on available reservoir sandstone facies data, additional well-log-based reservoir lithology identification, and by providing technical boundary conditions, we calculated the geothermal heat in place and the heat storage potential for virtual well doublet systems in Mesozoic reservoirs. This analysis reveals a large potential for both geothermal heating and aquifer thermal energy storage in geologically favorable regions, and in many areas with a high population density or a high heat demand. Given the uncertainties in the input data, the applied methods and the combination of data from different sources are most powerful in identifying promising regions for economically feasible subsurface utilization, and will help decrease exploration risks when combined with detailed geological site analysis beforehand.