Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy

Urheber*innen

Thompson,  David R.
External Organizations;

/persons/resource/nbohn

Bohn,  Niklas
1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Brodrick,  Philip G.
External Organizations;

Carmon,  Nimrod
External Organizations;

Eastwood,  Michael L.
External Organizations;

Eckert,  Regina
External Organizations;

Fichot,  Cédric G.
External Organizations;

Harringmeyer,  Joshua P.
External Organizations;

Nguyen,  Hai M.
External Organizations;

Simard,  Marc
External Organizations;

Thorpe,  Andrew K.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5012589.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thompson, D. R., Bohn, N., Brodrick, P. G., Carmon, N., Eastwood, M. L., Eckert, R., Fichot, C. G., Harringmeyer, J. P., Nguyen, H. M., Simard, M., Thorpe, A. K. (2022): Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy. - Journal of Geophysical Research: Biogeosciences, 127, 6, e2021JG006711.
https://doi.org/10.1029/2021JG006711


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012589
Zusammenfassung
Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity. This article describes how missions can overcome this bottleneck using the spatial continuity of atmospheric fields. Contemporary imaging spectrometers oversample atmospheric spatial variability, so it is not necessary to invert every pixel. Spatially sparse solutions can train local linear emulators that provide fast, exact inversions in their vicinity. We find that estimating the atmosphere at 200 m scales can outperform traditional atmospheric correction, improving speed by one to two orders of magnitude with no measurable penalty to accuracy. We validate performance with an airborne field campaign, showing reflectance accuracies with RMSE of 1.1% or better compared to ground measurements of diverse targets. These errors are statistically consistent with retrieval uncertainty budgets. Local emulators can close the efficiency gap and make rigorous model inversion algorithms feasible for global missions such as SBG.