Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens

Urheber*innen

Numberger,  Daniela
External Organizations;

Zoccarato,  Luca
External Organizations;

Woodhouse,  Jason
External Organizations;

/persons/resource/lganzert

Ganzert,  L.
3.7 Geomicrobiology, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Sauer,  Sascha
External Organizations;

Márquez,  Jaime Ricardo García
External Organizations;

Domisch,  Sami
External Organizations;

Grossart,  Hans-Peter
External Organizations;

Greenwood,  Alex D.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Numberger, D., Zoccarato, L., Woodhouse, J., Ganzert, L., Sauer, S., Márquez, J. R. G., Domisch, S., Grossart, H.-P., Greenwood, A. D. (2022): Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens. - Science of the Total Environment, 845, 157321.
https://doi.org/10.1016/j.scitotenv.2022.157321


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5013099
Zusammenfassung
Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.