Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Fragmentation of ice particle by collisions: Experimental setups and preliminary results for graupel and snowflakes

Urheber*innen

Grzegorczyk,  Pierre
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Yadav,  Sudha
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Zanger,  Florian
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Theis,  Alexander
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Mitra,  Subir K.
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Szakáll,  Miklós
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grzegorczyk, P., Yadav, S., Zanger, F., Theis, A., Mitra, S. K., Szakáll, M. (2023): Fragmentation of ice particle by collisions: Experimental setups and preliminary results for graupel and snowflakes, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-0900


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016578
Zusammenfassung
The production of secondary ice in clouds is expected to produce high concentrations of ice crystals but remains poorly understood. Collisions between ice particles have the potential to produce large concentrations of ice crystals. Only a few ice collision laboratory studies have been carried out so far, which hampers the ability to correctly represent this process in models. We carried out graupel-graupel and graupel-snowflake collision experiments in still air conditions in the cold room of the Wind tunnel laboratory of Johannes Gutenberg University of Mainz, Germany. All fragments resulting from graupel-graupel collisions were collected and investigated under microscope. Ice fragments after graupel-snowflake collisions were captured by an in-house developed holographic instrument. The number and size/area/aspect ratio distributions were derived from the measurements. Our first results revealed that 150 to 600 fragments are produced in graupel-graupel collisions and 70 to 500 in graupel-snowflake collisions, whereas the number of fragments is dependent on the collision kinetic energy. The maximum of the size distributions lies at 75 µm for graupel-graupel collisions and at 400 µm for graupel-snowflake collisions. From these new data, an improvement of the ice collision process in models is conceivable.