Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Effect of Past Saturation Changes on Noble Gas Reconstructions of Mean Ocean Temperature

Urheber*innen

Pöppelmeier,  Frerk
External Organizations;

Baggenstos,  Daniel
External Organizations;

Grimmer,  Markus
External Organizations;

/persons/resource/zhijun

Liu,  Zhijun
1.3 Earth System Modelling, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Schmitt,  Jochen
External Organizations;

Fischer,  Hubertus
External Organizations;

Stocker,  Thomas F.
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5017504.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pöppelmeier, F., Baggenstos, D., Grimmer, M., Liu, Z., Schmitt, J., Fischer, H., Stocker, T. F. (2023): The Effect of Past Saturation Changes on Noble Gas Reconstructions of Mean Ocean Temperature. - Geophysical Research Letters, 50, 6, e2022GL102055.
https://doi.org/10.1029/2022GL102055


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017504
Zusammenfassung
The ocean's immense ability to store and release heat on centennial to millennial time scales modulates the impacts of climate perturbations. To gain a better understanding of past variations in mean ocean temperature (MOT), a noble gas-based proxy measured from ancient air in ice cores has been developed. Here we assess non-temperature effects that may influence the atmospheric noble gas ratios reconstructed from polar ice and how they impact the temperature signal with an intermediate complexity Earth system model. We find that changes in wind speed, sea-ice extent, and ocean circulation have partially compensating effects on mean-ocean noble gas saturation, leading to a slight reduction of noble gas undersaturation at the Last Glacial Maximum (LGM). Taking these effects and ice core measurements into account, our model suggests a revised MOT difference between the LGM and pre-industrial of −2.1 ± 0.7°C that is also in improved agreement with other independent temperature reconstructions.