Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Relationship between storm-time Joule heating and Thermospheric cooling emission

Urheber*innen

Bag,  Tikemani
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Ogawa,  Yasunobu
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bag, T., Ogawa, Y. (2023): Relationship between storm-time Joule heating and Thermospheric cooling emission, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1936


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017603
Zusammenfassung
The conversion of the electromagnetic energy into the heat through the ohmic current is well known as the Joule heating. The Joule heating process plays an important role in dictating the solar wind energy propagation within the magnetosphere-thermosphere-ionosphere system during space weather events. It drives large vertical velocity altering the global circulation patterns and modifies the thermospheric structure, chemistry and dynamics including the global and local enhancement in thermospheric temperature. The thermospheric radiative emission by Nitric Oxide (NO) at 5.3 µm effectively regulates the thermospheric temperature during space weather events. In addition, the NO at 5.3 µm radiative emission accounts for about 80% of Joule heating energy during geomagnetic storms. We utilize the NO radiative emission at 5.3 µm as observed by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument onboard the NASA’s TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite and the Joule heating rates derived from the EISCAT (European Incoherent Scatter) radar to investigate the storm-time impacts of Joule heating on the NO 5.3 µm cooling emission. Furthermore, we also quantify the spatial and temporal variations of the Joule heating and their relation and cross-correlation with the thermospheric cooling emission during the geomagnetic storms of different intensity.