Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fracture Permeability Enhancement During Fluid Injection Modulated by Pressurization Rate and Surface Asperities

Urheber*innen
/persons/resource/yinlinji

Ji,  Yinlin
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Zhang,  Wei
External Organizations;

/persons/resource/hannes

Hofmann,  Hannes
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Cappa,  Frédéric
External Organizations;

/persons/resource/spzhang

Zhang,  Supeng
4.8 Geoenergy, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5017716.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ji, Y., Zhang, W., Hofmann, H., Cappa, F., Zhang, S. (2023): Fracture Permeability Enhancement During Fluid Injection Modulated by Pressurization Rate and Surface Asperities. - Geophysical Research Letters, 50, 18, e2023GL104662.
https://doi.org/10.1029/2023GL104662


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017716
Zusammenfassung
We present a series of controlled fluid injection experiments in the laboratory on a pre-stressed natural rough fracture with a high initial permeability (∼10−13 m2) in granite using different fluid pressurization rates. Our results show that fluid injection on a fracture with a slight velocity-strengthening frictional behavior exhibits dilatant slow slip in association with a permeability increase up to ∼41 times attained at the maximum slip velocity of 0.085 mm/s for the highest-rate injection case. Under these conditions, the slip velocity-dependent change in hydraulic aperture is a dominant process to explain the transient evolution of fracture permeability, which is modulated by fluid pressurization rate and fracture surface asperities. This leads to the conclusion that permeability evolution can be engineered for subsurface geoenergy applications by controlling the fluid pressurization rate on slowly slipping fractures.