Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Spatio-temporal characteristics of winter mixed layer turbulence in an energetic oceanic zone

Urheber*innen

Tedesco,  Pauline
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Mashayek,  Ali
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Naveira-Garabato,  Alberto
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Caulfield,  Colm-Cille
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tedesco, P., Mashayek, A., Naveira-Garabato, A., Caulfield, C.-C. (2023): Spatio-temporal characteristics of winter mixed layer turbulence in an energetic oceanic zone, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1778


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017822
Zusammenfassung
The mixed layer (ML) hosts an intense submesoscale turbulence playing a pivotal role for energy transfers. Representation of ML turbulence from observations and models, partly, relies on the knowledge of its spatio-temporal scales. Here, we physically-inform the need of high spatio-temporal resolutions (L ~ 1km; T ~1 hour) to accurately infer the ML turbulence. Based on a numerical simulation of the Drake Passage in winter, we combine a Lagrangian filtering and a Helmholtz decomposition to decompose motions (LPF: low vs. HPF: high frequency) and their dynamical components (rotational vs. divergent). The ML hosts a 'zoo' of motions including: energetics, primarily rotational, submesoscale currents (LPF) and less energetics internal-gravity waves (HPF), such as rotational inertial waves, divergent lee waves and an internal-wave continuum. The contributions of motions to kinetic energy transfers are driven by their partitioning into dynamical components and spatio-temporal scales. Purely rotational motions realise an inverse cascade and coupled rotational-divergent motions realise a forward cascade. Submesoscale currents are largely rotational and primarily realise an inverse cascade. Internal-gravity waves, roughly equipartitioned between rotational and divergent components, realise an inverse and forward cascade of close magnitudes when coupled to submesoscale currents. All motions spread up to small spatio-temporal scales (L < 10 km; T< 6 hours) and these ranges significantly contribute to the inverse (≥ 30 %) and forward (80 — 95 %) cascades. Our results show that all classes of motions should be represented at high spatio-temporal resolutions to comprehensively infer winter ML turbulence, which has implications for study strategies.