English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Long-term gravity field changes in Greenland and Antarctica from SLR data

Authors

Gałdyn,  Filip
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Sośnica,  Krzysztof
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Zajdel,  Radosław
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Meyer,  Urlich
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Jäggi,  Adrian
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Gałdyn, F., Sośnica, K., Zajdel, R., Meyer, U., Jäggi, A. (2023): Long-term gravity field changes in Greenland and Antarctica from SLR data, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1753


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5017838
Abstract
In recent years, monitoring of changes in the Earth’s gravity field has been carried out mainly by the Gravity Recovery And Climate Experiment (GRACE) and its successor GRACE Follow-On. However, very little information is available on the temporal evolution of the Earth's gravity field prior to the launch of the GRACE mission and through gaps in GRACE K-band data between 2010 and 2019. Fortunately, GRACE and GRACE Follow-On are not the only missions for the Earth's gravity field recovery. For the mass redistribution characteristics in large scales, we may employ Satellite Laser Ranging (SLR) observations to geodetic satellites. In this study, we derive gravity field changes for Greenland and Antarctica based on SLR data and compare the results to the GRACE, GRACE Follow-On, and Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) data. We propose a set of long-term, continuous solutions, in which the gravity field is expanded up to degree and order 10/10 with a monthly resolution from 1/1995 to 10/2021. We show results from the unconstrained solution, as well as the solution that has been decomposed into normal equations expanded up to degree and order 4, 6, 8, and 10 and stacked, taking advantage of stability and better resolution from lowest and higher-degree expansion. We also propose different types of weighting, degree and order-specific constraining, and different data lengths. The SLR-based solutions are evaluated based on the noise on the oceans and differences to IMBIE and GRACE results for Greenland and Antarctica, which are identified by substantial ice mass loss.