Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A numerical model for the interaction of io-generated alfvén waves with jupiter’s magnetosphere and ionosphere

Urheber*innen

Lysak,  Robert
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Sulaiman,  Ali
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Bagenal,  Fran
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Crary,  Frank
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lysak, R., Sulaiman, A., Bagenal, F., Crary, F. (2023): A numerical model for the interaction of io-generated alfvén waves with jupiter’s magnetosphere and ionosphere, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-1027


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018228
Zusammenfassung
The interaction of Io with the co-rotating magnetosphere of Jupiter is known to produce Alfvén wings that couple the moon to Jupiter’s ionosphere. We present first results from a new numerical model to describe the propagation of these Alfvén waves in this system. The model is cast in magnetic dipole coordinates and includes a dense plasma torus that is centered around the centrifugal equator. Results are presented for two density models, showing the dependence of the interaction on the magnetospheric density. Model results are presented for the case when Io is near the centrifugal and magnetic equators as well as when Io is at its northernmost magnetic latitude. The effect of the conductance of Jupiter’s ionosphere is considered, showing that a long auroral footprint tail is favored by high Pedersen conductance in the ionosphere. The current patterns in these cases show a U-shaped footprint due to the generation of field-aligned current on the Jupiter-facing and Jupiter-opposed sides of Io, which may be related to the structure in the auroral footprint seen in the infrared by Juno.