Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Building damage estimation using RaySAR, a Synthetic Aperture Radar simulator

Urheber*innen

Ho,  Chia Yee
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Neuschmidt,  Hannes
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Mas,  Erick
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Adriano,  Bruno
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Koshimura,  Shunichi
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ho, C. Y., Neuschmidt, H., Mas, E., Adriano, B., Koshimura, S. (2023): Building damage estimation using RaySAR, a Synthetic Aperture Radar simulator, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2246


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018516
Zusammenfassung
Typically, disaster response using remote sensing technology requires pre and post-disaster datasets. Unfortunately, pre-disaster data is not always available, and a lack thereof may lead to unreliable results in building damage predictions. Augmenting pre- and post-disaster data can artificially increase the training samples in machine learning (ML) models. In this regard, SAR simulators can provide synthetic data for augmentation purposes. Here, we introduce a general framework for applying SAR simulators to building damage estimation. We used a SAR simulator, RaySAR, and optimized surface parameters, reflection, and a 3D model of the Onagawa Nuclear Power Plant, where the 2011 Tohoku tsunami hit, to assess the reliability of the SAR simulator compared to an actual SAR image. In addition, we constructed 3D models of damaged buildings with multiple damage statuses of the European Macroseismic Scale (EMS-98) to evaluate the suitability of the simulator for representing earthquake and tsunami damage. We strive to improve the original simulator using a more capable rendering algorithm, path tracing, and incorporation of Graphics Processing Units (GPUs) to achieve higher realism in diffuse reflections and shorter computation times. The results are evaluated using similarity measures in the spatial and frequency domains, contrasting simulated with authentic SAR imagery. Preliminary results show that in simulated SAR imagery, damaged and undamaged buildings show distinguishable signatures. We believe that our simulator overcomes the limitations of the diffuse reflection model employed in RaySAR. Conclusively, the proposed framework seems promising for improving damage mapping in the context of future digital twin implementations.