Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Using FY-4A water vapor data to augment the NWP model forecasting performance over the South China

Urheber*innen

Liu,  Zhizhao
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Gong,  Yangzhao
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Chan,  Pak Wai
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Hon,  Kai Kwong
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, Z., Gong, Y., Chan, P. W., Hon, K. K. (2023): Using FY-4A water vapor data to augment the NWP model forecasting performance over the South China, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2169


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018637
Zusammenfassung
Fengyun-4A (FY-4A) is the first satellite in the second generation of China’s geostationary meteorological satellite series. The Advanced Geostationary Radiation Imager (AGRI) onboard FY-4A satellite can measure water vapor data at infrared band. In this study, to investigate the benefits of assimilating FY-4A water vapor data to weather forecasting performance over the South China region, we have performed the data assimilation experiments in the Weather Research and Forecasting (WRF) model for two periods with different water vapor conditions, i.e., February 2020 (dry period) and July 2020 (wet period). Two WRF schemes, i.e., WRF no data assimilation scheme (denoted as “WRF_NoDA”) and WRF with assimilation of FY-4A Precipitable Water Vapor (PWV) scheme (denoted as “WRF+FY-4A”), have been implemented. The PWV and rainfall forecasting results of the two WRF schemes are validated by Global Navigation Satellite System (GNSS) PWV and the rainfall observations of the surface meteorological stations, respectively. The evaluation results show that, compared with WRF_NoDA scheme, WRF+FY-4A indicates a better performance in both PWV and rainfall forecasting. Specifically, with the assimilation of FY-4A PWV, the average root mean squares error of WRF PWV forecasting results for the first 12 h after data assimilation is reduced from 2.34 kg/m2 to 2.25 kg/m2 over the February period and from 4.39 kg/m2 to 4.35 kg/m2 over the July period. Additionally, after assimilating FY-4A PWV, the equitable threat score of accumulated rainfall for the first 12 h after data assimilation increases from 0.217 to 0.237 when using 10 mm/12 h as rainfall detection threshold.