Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Weakly nonlinear analysis of rotating magnetoconvection with anisotropic diffusivities in earth’s core near the onset of stationary instability

Urheber*innen

Rani,  Hari Ponnamma
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Das,  Mrittika
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Jozef,  Brestensky
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Enrico,  Filippi
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rani, H. P., Das, M., Jozef, B., Enrico, F. (2023): Weakly nonlinear analysis of rotating magnetoconvection with anisotropic diffusivities in earth’s core near the onset of stationary instability, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2166


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018640
Zusammenfassung
The influence of anisotropic diffusive coefficients on the stability of the horizontal fluid planar layer, rotating about vertical axis, and permeated by a horizontal homogeneous magnetic field is studied. The linear stability analysis is performed using the separable solutions in the form of horizontal rolls. The onset of stationary motions is examined [1] for the present study. The weakly nonlinear behaviour of the convective motion in the vicinity of primary instability threshold is studied from the Landau-Ginzburg equation with cubic nonlinearity. This amplitude equation is obtained after using the multiple scale analysis and the modified normal mode solutions. The linear stability analysis of the amplitude equation is performed to investigate the secondary instabilities, such as Eckhaus instability and zig-zag instability. Reference: 1. T. Šoltis, J. Brestenský, (2009), Rotating magnetoconvection with anisotropic diffusivities in the Earth’s core, Physics of the Earth and Planetary Interiors, 178, 27-38.