Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Glacial carbon cycle changes by Southern Ocean processes with sedimentary amplification

Urheber*innen

Kobayashi,  Hidetaka
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Oka,  Akira
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Yamamoto,  Akitomo
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Abe-Ouchi,  Ayako
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kobayashi, H., Oka, A., Yamamoto, A., Abe-Ouchi, A. (2023): Glacial carbon cycle changes by Southern Ocean processes with sedimentary amplification, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2141


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018661
Zusammenfassung
Recent paleo reconstructions suggest that increased carbon storage in the Southern Ocean during glacial periods contributed to low glacial atmospheric carbon dioxide concentration (pCO2). However, quantifying its contribution in three-dimensional ocean general circulation models (OGCMs) has proven challenging. Here, we show that OGCM simulation with sedimentary process considering enhanced Southern Ocean salinity stratification and iron fertilization from glaciogenic dust during glacial periods improves model-data agreement of glacial deep water with isotopically light carbon, low oxygen, and old radiocarbon ages. The glacial simulation shows a 77-ppm reduction of atmospheric pCO2, which closely matches the paleo record. The Southern Ocean salinity stratification and the iron fertilization from glaciogenic dust amplified the carbonate sedimentary feedback, which caused most of the increased carbon storage in the deep ocean and played an important role in pCO2 reduction. The model-data agreement of Southern Ocean properties is crucial for simulating glacial changes in the ocean carbon cycle.