Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Tsunami Digital Twin – A new paradigm for tsunami disaster resilience

Urheber*innen

Koshimura,  Shunichi
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Mas,  Erick
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Adriano,  Bruno
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Musa,  Akihiro
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koshimura, S., Mas, E., Adriano, B., Musa, A. (2023): Tsunami Digital Twin – A new paradigm for tsunami disaster resilience, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2090


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018729
Zusammenfassung
The digital twin is now recognized as digital copies of the physical world's objects stored in digital(cyber) space and utilized to simulate the sequences and consequences of target phenomena. By incorporating the physical world’s data into the digital twin, users can fully view the target through real-time feedback. Given the importance of the digital twin, the authors propose “Tsunami Digital Twin (TDT)” as a new paradigm in tsunami science and engineering to enhance tsunami disaster resilience. The components of TDT are the transformation from "Data" to "Information" by integrating sensing, monitoring, and simulation; "Interpretation" of data and information; "Inference" by using available data and information to draw conclusions and consequences and decide policies and responses for social resilience. The fusion of these components is the key to gaining knowledge and insight for optimal solutions in the physical world. The components to be covered are the following six research themes that will be presented in the tsunami session. Theme 1: Real-time tsunami inundation modeling and forecast capability. Theme 2: Dynamic exposure estimation and guidance to mobile devices and connected vehicles. Theme 3: Application of machine learning to enhance real-time tsunami inundation forecast capabilities. Theme 4: Machine learning-based damage/loss estimation methods. Theme 5: Remote sensing data analysis for mapping. Theme 6: Social sensing of cascading disaster processes in the tsunami-affected area.