Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Cloud Removal using Machine Learning for BRDF/Albedo Retrievals in the Arctic

Urheber*innen

Hanasoge Nataraja,  Vikas
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hanasoge Nataraja, V. (2023): Cloud Removal using Machine Learning for BRDF/Albedo Retrievals in the Arctic, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-2059


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5018824
Zusammenfassung
Since the late 1990s, NASA’s Earth Observing System constellation of satellites has provided continuous, long-term observations of atmospheric and surface processes on Earth including surface albedo and Bidirectional Reflectance Distribution Function (BRDF) that are generated as an operational product using cloud-cleared, multi-angle surface reflectances over the course of several days. The BRDF is central to imagery-based cloud and aerosol retrievals, while the surface albedo is a fundamental Earth energy budget parameter. Yet, this product is currently unavailable at higher latitudes where (1) the low contrast between clouds and sea ice/snow poses a challenge for cloud clearing, and (2) drifting ice floes are not accounted for, resulting in a significant gap in our understanding of the Arctic radiation budget. To address this gap, we propose the development of a BRDF/albedo product for moving sea ice floes and snow called the Sea Ice Floe and Snow Albedo Tracker (SIF-SAT). By leveraging multi-overpass, multi-angular satellite data, SIF-SAT will retrieve BRDF and albedo under low contrast and moving surface conditions. We combine existing cloud masks with machine learning (ML) models to produce cloud-cleared scenes in the Arctic. These scenes are then fed to a segmentation algorithm to identify individual sea ice floes and their reflectances are tracked over time to obtain BRDF and albedo. This presentation will primarily focus on the cloud-clearing model which has implications for radiation science in polar regions. SIF-SAT will enhance our capabilities in the Arctic and enable more accurate estimates of the cloud-radiative effect and ice-albedo feedback.