Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Quantifying the environmental effects on tropical cyclone intensity change using a simple dynamically based dynamical system model

Urheber*innen

Xu,  Jing
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Wang,  Yuqing
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Yang,  Chi
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xu, J., Wang, Y., Yang, C. (2023): Quantifying the environmental effects on tropical cyclone intensity change using a simple dynamically based dynamical system model, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3410


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5019570
Zusammenfassung
Accurately prediction of tropical cyclone (TC) intensity is quite challenging due to multiple competing processes among the TC internal dynamics and the environment. Most previous studies have evaluated the environmental effects on TC intensity change based on TC best-track data which results from both internal dynamics and external influence. This study quantifies the environmental effects on TC intensity change using a simple dynamically based dynamical system (DBDS) model recently developed. In this simple model, the environmental effects are uniquely represented by a ventilation parameter B, which can be expressed as multiplicative of individual ventilation parameters of the corresponding environmental effects. Their individual ventilation parameters imply their relative importance to the bulk environmental ventilation effect and thus to the TC intensity change. Six environmental factors known to affect TC intensity change are evaluated in the DBDS model using machine learning approaches with the best-track data for TCs over the North Atlantic, central, eastern and western North Pacific and the statistical hurricane intensity prediction scheme (SHIPS) dataset during 1982–2021. Results show that the deep-layer vertical wind shear is the dominant ventilation factor to reduce the intrinsic TC intensification rate or to drive the TC weakening, with its ventilation parameter ranging between 0.5–0.8. Other environmental factors are generally secondary, with their respective ventilation parameters over 0.8. An interesting result is the strong dependence of the environmental effects on the stage of TC development. Finally, applications of the DBDS model to real TC intensity prediction are briefly discussed.