Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

CFM: a convolutional network for first motion polarity classification of earthquake waveforms

Urheber*innen

Messuti,  Giovanni
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Scarpetta,  Silvia
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Amoroso,  Ortensia
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Napolitano,  Ferdinando
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Mariarosaria,  Falanga
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Capuano,  Paolo
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Messuti, G., Scarpetta, S., Amoroso, O., Napolitano, F., Mariarosaria, F., Capuano, P. (2023): CFM: a convolutional network for first motion polarity classification of earthquake waveforms, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3553


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020465
Zusammenfassung
The knowledge of the crustal stress field is crucial for understanding the seismic activity in an area that, in turn, requires an in-depth knowledge on the dynamics of the crust. To that end, the reconstruction of focal mechanisms of earthquakes as reliable as possible is a preliminary and basic requirement to infer proper source mechanisms. Currently, the fault plane solution method, using P-wave polarities, is still frequently used. Anyway, manually determining the polarities of P-waves is time-consuming and susceptible to human error. These issues can be solved by automated processes thorough the application of machine learning techniques.In our study, the Convolutional First Motion (CFM) network, a Deep Convolutional Neural Network, is presented. It is utilized to categorize seismic traces based on the polarity of the P-waves' first motions. We used waveforms from two datasets: the Italian seismic catalogue INSTANCE and waveforms from earthquakes that occurred in the Mount Pollino region of Italy between 2010 and 2014.We developed a method based on Principal Component Analysis and Self-Organising Maps, which enabled a clustering process to identify sets of appropriate traces. The network was trained using 130·000 time windows centered on P-wave arrival times relative to waveforms in the INSTANCE catalogueThe network achieved accuracies of 95.7% and 98.9% on two test sets that were generated using the datasets for Mt. Pollino and a portion of the INSTANCE catalogue, respectively.This work has been partially supported by PRIN-2017 MATISSE project, No 20177EPPN2, funded by Italian Ministry of Education and Research.