Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Universal Differential Equations for glacier ice flow modelling using ODINN.jl

Urheber*innen

Bolibar,  Jordi
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Sapienza,  Facundo
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Maussion,  Fabien
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Lguensat,  Redouane
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Wouters,  Bert
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Pérez,  Fernando
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., Pérez, F. (2023): Universal Differential Equations for glacier ice flow modelling using ODINN.jl, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-3881


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020665
Zusammenfassung
Inversion methods play an important role in glacier models, both to calibrate and estimate parameters of interest (e.g. Glen's coefficients or basal sliding). However, inversions are usually made for each glacier individually, without using any global information, i.e. without deriving general laws governing the spatiotemporal variability of those parameters. The reason behind this limitation is twofold: the statistical challenge of making constrained inferences with multiple glaciers, and the computational limitation of processing massive glacier datasets. Machine learning powered with differential programming is a tool that can address both limitations. We introduce a statistical framework for functional inversion of physical processes governing global-scale glacier changes. We apply this framework to invert a prescribed function describing the spatial variability of Glen’s coefficient (A). Instead of estimating a single parameter per glacier, we learn the parameters of a regressor (i.e. a neural network) that encodes information related to each glacier (i.e. long-term air temperature) to the parameter of interest. The inversion is done by embedding a neural network inside the Shallow Ice Approximation PDE - resulting in a Universal Differential Equation - with the goal of minimizing the error on the simulated ice surface velocities. This framework is built inside ODINN.jl, an open-source package in the Julia programming language for global glacier evolution modelling using Universal Differential Equations. ODINN exploits the latest generation of ice surface velocities and geodetic mass balance remote sensing products, as well as many preprocessing tools from the Open Global Glacier Model (OGGM).