Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

ECS Awardee 2023: Simulation of complex alpine mass movements based on the Material Point Method and finite-strain elasto-plasticity theory

Urheber*innen

Cicoira,  Alessandro
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Blatny,  Lars
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Trottet,  Bertil
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Li,  Xingyue
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Gaume,  Johan
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cicoira, A., Blatny, L., Trottet, B., Li, X., Gaume, J. (2023): ECS Awardee 2023: Simulation of complex alpine mass movements based on the Material Point Method and finite-strain elasto-plasticity theory, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4982


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021381
Zusammenfassung
Alpine mass movements can generate process cascades involving different materials including rock, ice, snow, and water. Numerical modelling is an essential tool for the quantification of natural hazards. Yet, state-of-the-art operational models are based on parameter back-calculation and thus reach their limits when facing unprecedented or complex events. Here, we advance our predictive capabilities for mass movements and process cascades on the basis of a three-dimensional numerical model, coupling fundamental conservation laws to finite strain elastoplasticity. In this framework, model parameters have a true physical meaning and can be evaluated from material testing, thus conferring to the model a strong predictive nature. Through its hybrid Eulerian-Lagrangian character, our approach naturally reproduces fractures and collisions, erosion/deposition phenomena, and multi-phase interactions, which finally grants very accurate simulations of complex dynamics. Four benchmark simulations demonstrate the physical detail of the model and its applicability to real-world full-scale events, including various materials and ranging through five orders of magnitude in volume. In the future, our model can support risk-management strategies through predictions of the impact of potentially catastrophic cascading mass movements at vulnerable sites.