English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Zonal extension of the Middle East jet stream and its influence on the Asian monsoon

Authors

Wei,  Wei
IUGG 2023, General Assemblies, 1 General, International Union of Geodesy and Geophysics (IUGG), External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Wei, W. (2023): Zonal extension of the Middle East jet stream and its influence on the Asian monsoon, XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023).
https://doi.org/10.57757/IUGG23-4252


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021689
Abstract
Investigation into the interannual variation of the Middle East jet stream (MEJS) and its influence on the Asian monsoon indicates that the eastward extension of MEJS is closely related with a wetter and colder winter in southern China and a later onset of the subsequent Asian summer monsoon, compared with normal conditions. When the MEJS extends eastward, a significant barotropic anomalous anticyclone is located over the Arabian Sea (AS), associated with the southeastward propagating wave train from Europe. Intense divergence in the southwest of the AS anomalous anticyclone favors more convection over the western tropical Indian Ocean, which excites an anomalous upper-level anticyclone to the north as a Rossby wave response, further intensifying the AS anticyclonic anomaly. This positive feedback loop maintains the AS anomalous anticyclone and results in the eastward extension of the MEJS. Accordingly, intense northeasterly anomalies over the Mediterranean Sea and the subtropical westerly anomalies bring abundant cold air from the middle-higher latitudes to subtropical regions, resulting in a widespread cooling in subtropical Eurasia including southern China. Barotropic anomalous westerlies occur around the Tibetan Plateau in the south and deepen the India-Burma trough, favoring more water vapor transport from the Bay of Bengal to southern China. This wetter and colder conditions in subtropical Eurasia can persist from winter to spring, leading to the much later onset of the Asian summer monsoon. Therefore, the winter MEJS variability can be considered as an important indicator for the Asian monsoon.