English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Virtual experiments on an IP laboratory measurement

Authors

Scheunert,  Mathias
30. Kolloquium, 2023, Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung EMTF, External Organizations;

Blechta,  Jan
30. Kolloquium, 2023, Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung EMTF, External Organizations;

Börner,  Jana
30. Kolloquium, 2023, Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung EMTF, External Organizations;

Sonntag,  Martin
30. Kolloquium, 2023, Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung EMTF, External Organizations;

Spitzer,  Klaus
30. Kolloquium, 2023, Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung EMTF, External Organizations;

External Ressource
Fulltext (public)

EMTF_2023_St_Marienthal_10_Scheunert.pdf
(Publisher version), 250KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Scheunert, M., Blechta, J., Börner, J., Sonntag, M., Spitzer, K. (2024): Virtual experiments on an IP laboratory measurement. - In: Börner, J., Yogeshwar, P. (Eds.), - Protokoll über das 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: St. Marienthal, 25. September - 29. September 2023, 30. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung (St. Marienthal 2023), 28-28, 1 p.


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5026094
Abstract
Carrying out laboratory experiments is usually a time-consuming process. In addition, the options for varying parameter studies are limited and adjustments to the design of the measuring equipment are often not possible at all. In order to circumvent these limitations, we supplement our laboratory experiments with virtual experiments as best as possible. For this purpose, we have expanded our finite element library FEMALY [1] to include the so-called complete electrode model [2], which allows us to simulate electrodes of any shape for DC and IP applications and also provides us with explicit mathematical expressions for calculating sensitivities [3]. As a first case study, we consider an IP measurement on a measuring cylinder with embedded ring electrodes to virtually reproduce the time-varying change of the apparent resistivity for laboratory tracer experiments (Figure 1). We present the real and imaginary part of the sensitivity distribution of the underlying measurement configuration that confirms our initial assumption that the actual electrode surface shape has a relatively small influence on the observed measurement quantities.