Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The SPICE Project: Calibrated production rates of cosmogenic 3He and 21Ne in olivine and pyroxene from the 72 ka SP basalt flow, Arizona, USA

Urheber*innen
/persons/resource/drcrf

Fenton,  Cassandra
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/nied

Niedermann,  Samuel
3.1 Inorganic and Isotope Geochemistry, 3.0 Geochemistry, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Dunai,  Tibor
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fenton, C., Niedermann, S., Dunai, T. (2024): The SPICE Project: Calibrated production rates of cosmogenic 3He and 21Ne in olivine and pyroxene from the 72 ka SP basalt flow, Arizona, USA. - Quaternary Geochronology, 83, 101560.
https://doi.org/10.1016/j.quageo.2024.101560


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5026859
Zusammenfassung
The formally named SP lava flow is a quartz-, olivine- and pyroxene-bearing basalt flow that is preserved in the desert climate of northern Arizona, USA. The flow has an 40Ar/39Ar age of 72 ± 4 ka (2σ) and has undergone negligible erosion and/or burial, making its surface an ideal site for direct calibration of cosmogenic nuclide production rates. Production rates for cosmogenic 3He (3Hec) and 21Ne (21Nec) have been determined from SP flow olivine and pyroxene in this study. The error-weighted mean, sea-level, high latitude (SLHL) total reference production rates of 3He in olivine and pyroxene have identical values of 135 ± 8 at/g/yr (2; standard error) using time-independent Lal (1991)/Stone (2000) (St) scaling factors. These production rates decrease to identical values of 130 ± 8 at/g/yr (2; standard error) when 3He measurements are standardized to the CRONUS-P pyroxene standard. The St-scaled, error-weighted mean, total reference production rates of 21Ne in olivine and pyroxene are 48.4 ± 2.9 at/g/yr and 26.5 ± 1.7 at/g/yr (2; standard error), respectively, increasing to 49.3 ± 3.0 at/g/yr and 27.0 ± 1.7 at/g/yr (2; standard error), respectively, when standardized to the CREU-1 quartz standard. 3He and 21Ne production rates (St) overlap within 2σ uncertainty with other St-scaled production rates in the literature. SLHL 3He and 21Ne production rates in SP flow olivine and pyroxene are nominally lower if time-dependent Lm and Sa scaling factors are used. Olivine and pyroxene both have identical, error-weighted mean SLHL production rates of 127 ± 8 at/g/yr (2; standard error) using Lm scaling factors and CRONUS-P standardized 3He measurements. These production rates decrease to identical values of 110 ± 7 at/g/yr (2; standard error) for olivine and pyroxene when using Sa scaling factors. The Lm-scaled, error-weighted mean, total reference production rates of 21Ne in olivine and pyroxene are 48.1 ± 2.8 at/g/yr and 26.4 ± 1.7 at/g/yr (2; standard error), respectively, when standardized to the CREU-1 quartz standard. The error weighted mean, local 21Ne/3He production rate ratio in olivine is 0.358 ± 0.009 (2; standard error), which increases to 0.378 ± 0.012 when using CREU-1 standardized 21Ne production rates and CRONUS-P standardized 3He production rates. The error weighted mean, local 21Ne/3He production rate ratio in pyroxene is 0.197 ± 0.006, or 0.208 ± 0.008 when 21Ne and 3He are standardized to CREU-1 and CRONUS-P, respectively. The updated, CREU-1 standardized 21Nec rate (St) in SPICE quartz is 16.5 ± 1.1 at/g/yr. Production of 21Ne in coexisting SPICE olivine (ol), pyroxene (px), and quartz (qz) (standardized to CREU-1; Fenton et al., 2019; this study) yields error-weighted mean, local production rate ratios of 3.00 ± 0.13 (2) and 1.64 ± 0.08 (2) for 21Neol/21Neqz and 21Nepx/21Neqz, respectively. This study suggests that production rates of 3He and 21Ne in SPICE olivine and pyroxene agree well with St- and Lm-scaled global mean production rates in the literature. It also indicates that CRONUS-P and CREU-1 standardizations yield production rates in even stronger agreement with these global mean rates.