Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Development of a Digital Workflow for Layer Reduction Strategies and Visual-Analytical Outcome Analysis to Enhance Geo-Hydraulic Modeling Efficiency

Urheber*innen

Nixdorf,  Erik
External Organizations;

/persons/resource/sips

Sips,  M.
1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/morstein

Morstein,  Peter
1.4 Remote Sensing, 1.0 Geodesy, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nixdorf, E., Sips, M., Morstein, P. (2024): Development of a Digital Workflow for Layer Reduction Strategies and Visual-Analytical Outcome Analysis to Enhance Geo-Hydraulic Modeling Efficiency - Abstracts, 15th International Conference on Hydroinformatics - HIC 2024 (Beijing, China 2024).
https://doi.org/10.3850/iahr-hic2483430201-161


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5028277
Zusammenfassung
Reducing hydrogeological complexity is a crucial step in the development process of many 3D groundwater models aiming to reduce computational costs and to keep the model parsimonious. This study presents a combined approach, leveraging expert knowledge to simplify stratigraphy and analyze changes in geohydraulic simulation outputs based on selected strategies. Hereby we develop and merge two open source tools: “Stratmerge” for calculating simplified stratigraphy extents and parameters as well as “Stacked Parameter Relation” for visual data exploration of geohydraulic ensemble simulations. We test the suitability of our approach by simulating groundwater flow in the sedimentary aquifer of the Selke River Basin in Germany using an underlying hydrogeological model of user-defined complexity. The groundwater flow is simulated by applying the finite element simulator OpenGeoSys 6.4. We demonstrate that our combined approach is feasible and generic, simplifies model construction as well as provides insight into the dependencies between the hydrogeological model setup and the simulation results. Our approach could be used by hydrogeological modelers for a wide variety of aquifers constituted of sedimentary granular material.