Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

How water, temperature, and seismicitycontrol the preconditioning of massiverock slope failure (Hochvogel)

Urheber*innen

Leinauer,  Johannes
External Organizations;

/persons/resource/mdietze

Dietze,  Michael
4.6 Geomorphology, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Knapp,  Sibylle
External Organizations;

Scandroglio,  Riccardo
External Organizations;

Jokel,  Maximilian
External Organizations;

Krautblatter,  Michael
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5028932.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Leinauer, J., Dietze, M., Knapp, S., Scandroglio, R., Jokel, M., Krautblatter, M. (2024): How water, temperature, and seismicitycontrol the preconditioning of massiverock slope failure (Hochvogel). - Earth Surface Dynamics, 12, 5, 1027-1048.
https://doi.org/10.5194/esurf-12-1027-2024


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5028932
Zusammenfassung
The anticipation of massive rock slope failures is a key mitigation strategy in a changing climate and environment requiring a precise understanding of pre-failure process dynamics. Here we exploit >4 years of multi-method high-resolution monitoring data from a large rock slope instability close to failure. To quantify and understand the effect of possible drivers (water from rain and snowmelt, internal rock fracturing, and earthquakes), we correlate slope displacements with environmental data, local seismic recordings, and earthquake catalogues. During the snowmelt phase, displacements are controlled by meltwater infiltration with high correlation and a time lag of 4–9 d. During the snow-free summer, rainfall induces accelerations with a time lag of 1–16 h for up to several days without a minimum activation rain sum threshold. Rock fracturing, linked to temperature and freeze–thaw cycles, is predominantly near the surface and unrelated to displacement rates. A classic Newmark analysis of recent and historic earthquakes indicates a low potential for immediate triggering of a major failure at the case site, unless it is already very close to failure. Seismic topographic amplification of the peak ground velocity (PGV) at the summit ranges from a factor of 2–11 and is spatially heterogeneous, indicating a high criticality of the slope. The presented in-depth monitoring data analysis enables a comprehensive rockfall driver evaluation and indicates where future climatic changes, e.g. in precipitation intensity and frequency, may alter the preconditioning of major rock slope failures. How to cite. Leinauer, J., Dietze, M., Knapp, S., Scandroglio, R., Jokel, M., and Krautblatter, M.: How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel), Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, 2024.