English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Acceleration of Energetic Electrons in Jovian Middle Magnetosphere by Whistler‐Mode Waves

Authors
/persons/resource/yixinhao

Hao,  Yixin
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;
Submitting Corresponding Author, Deutsches GeoForschungsZentrum;

/persons/resource/yshprits

SHPRITS,  YURI
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Menietti,  J. D.
External Organizations;

Averkamp,  T.
External Organizations;

/persons/resource/dedong

Wang,  D.
2.7 Space Physics and Space Weather, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Kollmann,  P.
External Organizations;

Hospodarsky,  G. B.
External Organizations;

Drozdov,  A.
External Organizations;

Saikin,  A.
External Organizations;

Roussos,  E.
External Organizations;

Krupp,  N.
External Organizations;

Horne,  R. B.
External Organizations;

Woodfield,  E. E.
External Organizations;

Bolton,  S. J.
External Organizations;

External Ressource
No external resources are shared
Fulltext (public)

5029164.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hao, Y., SHPRITS, Y., Menietti, J. D., Averkamp, T., Wang, D., Kollmann, P., Hospodarsky, G. B., Drozdov, A., Saikin, A., Roussos, E., Krupp, N., Horne, R. B., Woodfield, E. E., Bolton, S. J. (2024): Acceleration of Energetic Electrons in Jovian Middle Magnetosphere by Whistler‐Mode Waves. - Journal of Geophysical Research: Space Physics, 129, 12, e2024JA032735.
https://doi.org/10.1029/2024ja032735


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5029164
Abstract
An abundant multi-MeV electron population beyond the orbit of Io is required to explain the intense inner radiation belt (electrons MeV) at Jupiter and its synchrotron radiation. In order to better understand the synergistic effect of radial transport and local wave-particle interactions driven by whistler-mode waves on the formation of Jupiter's radiation belt, we perform 3-D Fokker-Planck simulations for Jovian energetic electrons with the Versatile Electron Radiation Belt code. An empirical model of Jovian whistler-mode waves updated with measurements from the Juno extended mission is used to quantify the local acceleration and pitch angle scattering. Resonant cyclotron acceleration by whistler-mode waves leads to significant enhancement in the intensity of electrons above 1 MeV in the middle magnetosphere. Radial diffusion is capable of transporting MeV electrons accelerated by outer-belt whistler-mode waves into the region, where they are further accelerated adiabatically to energies of about 10 MeV.